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Abstract

We describe an automated method for image coloriza-
tion that learns to colorize from examples. Our method ex-
ploits a LEARCH framework to train a quadratic objective
function in the chromaticity maps, comparable to a Gaus-
sian random field. The coefficients of the objective function
are conditioned on image features, using a random forest.
The objective function admits correlations on long spatial
scales, and can control spatial error in the colorization of
the image. Images are then colorized by minimizing this
objective function.

We demonstrate that our method strongly outperforms a
natural baseline on large-scale experiments with images of
real scenes using a demanding loss function. We demon-
strate that learning a model that is conditioned on scene
produces improved results. We show how to incorporate a
desired color histogram into the objective function, and that
doing so can lead to further improvements in results.

1. Introduction

We describe a method that learns to colorize grey-level
images. Our method learns a cost function that evaluates lo-
cal predictions of color, spatial consistency, and consistency
with an overall histogram. There are two reasons to be in-
terested in colorization. First, solutions have some practical
applications (colorizing old movies or photographs; correct-
ing color in legacy images). Second, the problem is a good
model for a wide range of problems. In many cases, we
wish to take an image and predict a set of values at each
pixel in the input image, using information from the input
image. Our predictions should have significant long-scale
spatial structure. Problems like predicting albedo, shading,
depth, denoised images, and so on have this form. One ad-
vantage of colorization as a model is that immense coloriza-
tion datasets are easily available, and they are organized in
interesting ways. We use the SUNS dataset [20], which is
organized by scene.

It is natural to predict image maps by using image

data and prior knowledge to set up an optimization prob-
lem, which is solved to recover the desired representation.
Rather than using domain knowledge to set up prior or like-
lihood terms, we train an optimization problem by requiring
it to produce good colorizations of training data.

Contributions: Our colorization method is learned from
data, using a novel variant of LEARCH to balance pixel-
wise accuracy and spatial error. Comparable methods for
training Gaussian Random Fields must impose positive def-
initeness constraints on the inverse covariance matrix, and
encounter practical limits on the scale of spatial terms in the
inverse covariance matrix; our method avoids these difficul-
ties. Our method significantly outperforms the best baseline
we are aware of, in the first quantitative colorization exper-
iments we are aware of. We show how to exploit a target
histogram to apply global constraints. We show that pos-
sessing a scene label at run-time always provides a target
histogram that results in improved quantitative performance
performance; this scene label could come from an oracle,
from application logic, or from a scene classifier applied to
the grey-level image.

1.1. Related Work

The problem most like ours is predicting an intrinsic im-
age (one predicts albedo and shading instead of the color
layers). The traditional approach splits an image into shad-
ing and albedo components [9]. Good strategies should
have three properties. First we wish to correctly predict in-
dividual pixels. Second we wish to avoid bad spatial pat-
terns in the output, even over long scales. Third we should
be capable of predicting multiple channels, even when those
channels have complex interactions. The properties are usu-
ally in tension. For example the best independent prediction
of pixel values generally contains bad patterns. Tradition-
ally, this tension is managed by an optimization problem. A
learned data term attempts to predict each pixel correctly
based on some local information while hand chosen pri-
ors enforce spatial and channel coherence. While the data
terms are often portable, priors are often specific to partic-
ular problems, and can be hard to identify. For example,
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Barron and Malik provide a good review and an extremely
strong method for decomposing images into albedo, shad-
ing and shape fields [1]; however, their results depend del-
icately on a good choice of prior, and their priors require
considerable domain knowledge to produce.

Data: We choose to study colorization because very
large datasets are easily obtained by dropping the color rep-
resentation of any collection of color images. There are
datasets for shading and albedo decomposition, but these
have disadvantages. The pioneering dataset of Grosse et al.
has been extensively studied, but is small and shows iso-
lated objects of quite limited material complexity [6]. Bell
et al’s dataset does not annotate entire images [2].

Notation: We write vectors as b and matrices as W. I
is the input grey-level image and c is the set of color layers
we wish to infer, rearranged into a vector.

Learning to Optimize: A Gaussian random
field (GRF) models the log-likelihood of a coloriza-
tion (or other set of intrinsic image layers) c as
—[(1/2)e'ES I)e = b (I)c] + K, where K is a
constant of no interest; the first application to intrinsic
images is by Tappen et al [18]. Maximum likelihood
inference involves solving ¥~ 'c = b. Learning by maxi-
mizing likelihood is impractical, because the term in det X
is difficult to manage; instead, one learns by maximizing
pseudolikelihood. An important difficulty of GRFs is
obtaining models of X ~! that control long-scale spatial
effects (have many non-zero terms) without introducing
unmanageably many parameters and keeping ¥ ~! positive
definite. Jancsary et al. use a regression tree model of 37!
and b; the practicalities of computing pseudolikelihood
limit the range of spatial support possible, and they must
adapt the learning algorithm to ensure the estimate is
positive definite [8]. Like Jancsary et al. we learn a
quadratic optimization problem in c, but we apply no prob-
abilistic interpretation. In contrast, we extend LEARCH
[17], a framework for learning an objective function from
examples, in a manner that allows us to control long spatial
scales and provides a positive definite Hessian without
difficulty.

Colorization:  Producing a color image from a
monochrome image is again a standard problem. Most
current solutions are intended to be part of an authoring
pipeline, and have an interactive component. We are not
aware of a standard quantitative measure of performance
or of quantitative studies. A good review appears in [12].
Jancsary et al. show that GRF’s can be applied to coloriza-
tion [8]. Charpiat et al. predict multiple colors for each
pixel by estimating conditional probabilities over texture
features and enforce smoothness using graph-cuts to find
globally optimal colors [4]. Similarly, Bugeau et al. per-
form energy minimization using variational methods to find
optimal color from multiple predictions [3]. Hertzmann et

al. demonstrated that their image analogies method could
be used to colorize [7], and the approach was extended
by Welsh [19] by introducing different normalization and
matching step. Morimoto et al. [13] showed how to choose
a good exemplar for [19] automatically; we use this method
as our baseline.

2. Learning an Objective Function

We wish to learn an objective function ®(c, I) such that
argmin, @ is close to the correct colorization of /. We ex-
pect c to be very large, so it is natural to restrict our attention
to problems quadratic in c. It is also natural to require the
Hessian be positive definite, yielding a single solution. Such
a problem is equivalent to a GRF. The primary issues here
are (a) obtaining a parametric representation of the Hessian
that allows long scale control with few parameters and (b)
ensuring the Hessian is positive definite. We drop the prob-
abilistic interpretation, because it is not required to attack
these problems.

Write d for the dimension of ¢, b([) for a vector that is a
function of the image, and A(I) for a matrix, with column
rank at least d, that is a function of the image. Then the
most general objective function that meets our constraints
is 1||b(I) — A(I)c||? It can be helpful to think of A(I)c
as a set of image-dependent linear features of ¢ and b([)
as predictions of the features using /. There are too many
parameters for feasible learning.

To limit the number of parameters, one could assume
that effects in images are contained within some neighbor-
hood. We write II,, for the matrix which selects such a
patch about pixel u. Then the form Y-, . . 5[b(1,u) —
A(I,u)IL,c||? is a simplification that exposes a unity be-
tween existing methods. Assume that A(I,u) is the iden-
tity then b(7, u) makes a prediction of the patch about u;
we get a patch-matching approach like that of [7] and [19]
(though these have a data-dependent prior on c). If A(7,u)
is the identity and b(7,w) returns a filtered version of the
image I at u, then we have a filter forest [8]. However, for
unconstrained A(/, u) and for large patches there are still
too many parameters to learn.

Now define a set of f filters which are applied at each
pixel. This allows us to limit the dimensionality of the
problem without blinding our method to long-scale effects.
Specifics of the filters chosen can be found in section 3.2,
but we require one filter to be the identity. We write the lin-
ear operator that implements the filters as [I ,F T} T, using
this notation to keep track of the fact that one filter is always
the identity. Now interpret II,, to be the matrix that picks
out all filter responses located at the center of the patch wu.
Consider
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where W(I,u) isn x f, n < f, the first row of W(I, u)
is [1,0,...0] and so picks out the pixel value at u, and the
rows of W(I,u) are orthonormal. Here W(I,u) can be
thought of as projecting the many filter responses at u to
a lower dimensional summary, which must be predicted by
b(I, ). The column rank of W(I, u) is clearly n.

This notation is clumsy, so we drop the device of projec-
tion onto patches, and build W(I) by stacking the per-patch
row orthonormal matrices, and similarly form b(7) to ob-
tain

F

where W(I) is now (nd) x (fd) and is obtained by padding
the rows of each W(I, u) with zeros and stacking appropri-
ately. We must have that the column rank of W(I) is (nd),
because each column is obtained by taking a column of an
appropriate W(I, u), and padding with zeros above and be-
low. It follows that the Hessian of this objective function
is positive definite (more detail in supplementary material).
Qualitatively, F is a list of potentially significant patterns in
c, W identifies combinations of those filters to predict, and
b predicts the filters. In what follows, we write A(I) for

w(I) [z, FT]".
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2.1. Learning

We use LEARCH to learn appropriate W(I,u) and
b(I,u) for pixels u independently [17]. Write ®(c; 6, I, u)
for an objective function with parameters 6; in our case
0 = (W, u),b(I,u)}. Write {(c},I;)} as a set of in-
put ground truth color images and their corresponding grey-
level image, and H(-,-) for a margin. Then LEARCH re-
quires colorizations which are further away from the ground
truth (i.e. H(c*,c) is large) should be given larger scores.
This yields the objective in :

Z [@(c;‘; 0,1;,u) — mcin{CI)(c; 0,1;,u) — A\H(c], c)}}
Z 3

In our case the parameters # are functions of the image,
W(I,u),b(I,u). The standard strategy for learning under
these conditions is functional gradient descent on the objec-
tive function.

An important nuisance of solving LEARCH-style prob-
lems with functional gradient descent is that every step re-
quires solving an inner optimization problem (ming{- - -}
in eq (3)) for every example. For an appropriate choice of
margin this can be avoided. In particular, we chose.

H(c*,c) = [lA(L,u)(c — )| )

With this margin, we can complete the square to retrieve a

closed form solution of eq (3) (supplementary section 1).
Such a margin may not be appropriate for all learn-

ing problems because A(I, u) has a non-trivial nullspace.

Therefore, ®(c;0,I,u) can possibly grow only in some
(rather than all) dimensions of the image patch (Refer sup-
plementary section 1). However, in our case 1) our patch
filters form a sufficient (even if incomplete) representation
of the diversity in real image patches and 2) W(I,w) iden-
tifies the important combination of those filters for the spe-
cific image patches we are considering. Furthermore, we
constrain YV to be orthonormal which eliminates the trivial
solution.

3. Implementation
3.1. Learning in practice

We represent W(I) and b(I) as a sum over regression
trees, as in [5]. There are n rows of each for each pixel
location. Assume there are t regression trees, write orth
for the operator that orthonormalizes the rows of a matrix,
Wi(I,u) for the estimate of the n rows corresponding to
the u’th pixel location computed by the first ¢ trees, and
AWUHD (T, 4) for the contents of the leafs of the i + 1°th
tree reached by passing the features at the u’th pixel location
down the tree. Then we have the update

WD (1) = orth WD (1, 1) + AWEHD (1)) (5)

Each leaf of each tree also contains an affine function
predicting an update to the values of b(I) from ¥,.(I,u),
the regression features evaluated at pixel location u (see sec-
tion 3.3). Using the notation of the previous paragraph with
the exception that ABU+1) (T, u) is now an affine function,
we have the iteration

b (1, u) = b (I, u) + ABEHY(I,u) (¥, (I,u)) (6)

We depart from tradition here in our computation of trees
as we perform line search at each leaf independently. This
allows us to make maximal progress on each leaf, regard-
less of the state of the tree. We believe this is an important
feature for colorization as we expect the error to be dom-
inated by a small number of difficult to predict patches.
We also differ from traditional regression trees due to the
orthonormalization which means that during inference we
must traverse the trees and accumulate their effects in the
same order they were learned.

3.2. Constructing Filters

In defining a set of filters F for our regression, there is
no point in controlling effects that do not occur in images.
A natural vocabulary for an image representation is bars and
spots at various scales and orientations. We also learn fil-
ters created from eigen-patches corresponding to the largest
eigenvalues. These eigen-patches attempt to encode specific
dataset peculiarities. An obvious question is which vocabu-
lary is best, however, we do not currently have a satisfactory
answer. Detailed information on the filters we used in sup-
plementary.



3.3. Features

We seek to define two sets of features: split features
(Uy), as the name suggests determine the splits in our re-
gression trees and regression features (V,.) are used as pre-
dictors. Split features should provide a good description for
the classification of pixels with similar characteristics, and
thus similar color. We use grey-level value, blurred grey-
level value, grey-level gradients, and average color and vari-
ance for this. Average color and variance are computed for a
query grey-level image by retrieving the top-k£ most similar
images from an image dataset. We use bag-of-features re-
trieval using SIFT features computed on the grey-level im-
age [14]. A standard vocabulary tree is used to quantize
SIFT features to visual words and we find the top 9 images
with nearest tf-idf vectors. We compute mean and variance
at each pixel.

Regression features (¥,.) should embody properties of
the neighborhood and exhibit a strong correlation to the
color. For this we use LM filter bank responses (scaled
between 0 and 1), since they are good at discriminatively
identifying the material and texture of swatches [ 1].

3.4. Inference

In general, minimizing a quadratic objective on a large
non-sparse matrix is difficult because minimization requires
solving a large linear system. In our case, inference requires
solving the linear system

AT A(D]e = A1) Tb(I) )

but we cannot form or store W = A(I)T A(I) because it
is too large and non-sparse. However, we can compute the
product of WV with a vector x: form x as an image, convolve
it with the filters, multiply by a sparse matrix and then fil-
ter again. This structure allows us to use pre-conditioned
conjugate gradient to solve this linear system (see supple-
mentary section 2).

3.5. Histogram Correction

The color image c inferred above, henceforth called the
source image, can be improved further by enforcing global
properties (e.g. beach scenes have many blue pixels for
sky/water, indoor scenes have white walls, effects of yellow
lighting etc.). A known method to perform this in image
manipulation literature is histogram adjustment [16]. We
develop a novel histogram correction step.

We model the desired target histogram (¢) as Gaussian
mixture model (GMM) obtained using the EM algorithm.
The number of components (M) in GMM are equal to the
modes obtained by performing mean-shift clustering on the
target histogram. We then find the corresponding modes in
the histogram of the source image (s). This is done by ini-
tializing mean-shift to the modes of the target histogram and

allowing it to shift up to a threshold distance. The source
image histogram is then modeled by a GMM, now with a
known correspondence of the M components of the target
histogram and the M components of the source histogram.

Write 13, 021, w; for the mean, covariance and weight
of the 7" Gaussian component in GMM. We distinguish be-
tween source and target histogram using superscripts s, ¢ re-
spectively. A standard measure for the divergence between
two GMMs is the Bhattacharyya distance, which in the case
of constant spherical covariance becomes.

M
1 X 1
Pp(s|lt) = Z &7\|Mf — ull? - §ln(wfw§) (®)

i=1

Notice that correspondence between the components must
be known in the Bhattacharyya distance above, as in our
case. p and w; are functions of the source image c as
per equations of EM algorithm. This allows us to perform
a steepest gradient descent to find optimal c. Closed form
derivatives with respect to ¢ can be obtained and we update
the soft assignments to Gaussian components after every de-
scent step, details are in supplementary section 3.

Our final objective function is a weighted sum of the
LEARCH objective ®; and the Bhattacharyya distance
®p. This ensures spatial coherence while performing his-
togram correction. The complete objective function is:
® = &5 + A\ Pr. The weight A\;, is learned by search
using a validation set, as discussed in Section 4.2.

3.6. Scene Histograms

Histograms can be estimated automatically from training
data by taking the normalized histogram of all training im-
ages. We refer to this as the mean histogram for a scene, and
use it as the target histogram in some of our experiments.

3.7. Scene Classification

Scene labels can be provided automatically [10, 20] at
high accuracy. We use a scene classifier which uses GIST
features [15] to provide scene labels. We verify that our
classifier produces results comparable to those reported in
[20] for a GIST scene classifier on the 15 scene dataset.
Predicted scene labels are used to create a fully automatic
scene specific colorization method.

4. Experiments
4.1. Dataset

We perform colorization on 6 scene categories of the
SUN dataset, viz. beach, castle, outdoor, kitchen, living
room, bedroom. We chose 3 indoor and 3 outdoor cate-
gories with maximum number of images. All images are
rescaled to have height of 256, with aspect ratio maintained.
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Figure 1: Large weight (A1) for the LEARCH objective prevents modification of colors by histogram correction. Lowering
AL, makes colors vivid, e.g. sand becomes yellowish. Very low Ay, can cause artifacts as it downweighs the spatial coherence.

For each scene category, we randomly select 40 color/grey-
level image pairs as training data, 20 image pairs for vali-
dation and 40 grey-level images for testing. For scene in-
dependent training, we merge the training images of all the
6 categories together. We perform a parameter search on
validation and use the optimal parameters in test (Section
4.2). The remaining images in each category are used as a
database to obtain the top-k matching images for generating
average color image (Section 3.3).

4.2. Parameter Search

Learch. Our model has hyper-parameters which determine
the tree structure, sampling of training data, and LEARCH
objective function parameters. The number of trees (¢,,) and
the maximum depth (¢,) define the forest parameters. The
number of samples per tree (¢5), the minimum number of
samples per leaf (/,), and the number of samples from each
training image (¢5) determine how to handle training data.
The inner dimension of A, the LEARCH margin A\ deter-
mine the function we will learn. We perform a search over
these parameters and use the optimal values.

We search values which affect the objective function
first, since improvements should be independent of the tree
parameters. We found large inner dimensions of V¥ improve
performance but cost memory. We use an inner dimension
of 12. A margin A\ = .25 provides a good tradeoff between
enforcing the margin without allowing it to dominate.

We then search over the tree parameters. Rather than
limiting our trees by depth, we find that allowing very deep
trees t4 = 60, and enforcing a large minimum samples per
leaf I, = 100 works well. We find that a relatively small
number of trees ¢,, = 8 works well due to their expressive-
ness. We set t; = 7000 and 5 = 4000 for 40 images.
Histogram Correction. We vary the weight of the
LEARCH objective (A1) with respect to Bhattacharyya Dis-
tance between source and target GMMs. In Figure 1, we
vary it from O to 1000 and observe error is lowest for values
between 1 and 10, we set it to 5.

4.3. Error Metric

Since intensity information (I = L+¢+B) is already
present in the grey-level image, we only estimate 2 out of
the 3 channels. During training, we transform RG B—color

space to a de-correlated 2-channel normalized opponent

_ B _ (R+G)
color-space. The 2 channels are I, = 7 — ~—;

Ib — R-G

and

In the 2-channel image, the intensity information is sup-
pressed and values represent colors. We measure the aver-
age root mean squared error of the 2-channel images com-
pared to the ground truth. In addition to average error, we
display cumulative histograms of error values for pixels and
images (Figure 2). Cumulative histograms allow us to eval-
uate the distribution of errors that a colorization makes.

Note that, our error metric is particularly harsh because
believable colors different from the ground truth are heavily
penalized, while small spatial oddities are not. Still, on a set
of images our evaluation provides a comprehensive picture
of the performance of colorization.

4.4. Algorithms used for Evaluation

Baseline. We use two colorization methods as baseline: (7)
Welsh et al. [19] which transfers color to a grey-level im-
age from a carefully selected reference image. We use the
most similar image from the top-k retrieved images as ref-
erence image (Section 3.3). This is similar to the method
proposed by [13]. (ii) Average color image, where color is
transferred by averaging color channels of top-k£ matching
images.

Scene independent training. We train a single LEARCH
image regressor from a scene independent training set. We
either report the LEARCH result directly, or apply the his-
togram correction using the ground-truth histogram from
oracle.

Scene specific training. We train a LEARCH image regres-
sor for each scene category. We either report the LEARCH
result directly, or apply the histogram correction using the
ground-truth histogram from oracle or using the scene spe-
cific mean histogram (i.e. the normalized histogram of all



Baseline: Training: P,
With scene label Without scene label Training: With scene label
Testing: Scene Classification | Testing: Oracle Scene Label
Avg. Welsh LEARCH + . .
Color  etal. | PEARCH "o | Learcn | LEARCH=HISU |y b gy | LEARCH + Hist
Mean GT Mean GT

Averaged | )05 353 0.284 0271 0270 | 0262 0242 0260 | 0254  0.236
over scenes

Table 1: Comparison of average RMS error for different configurations of our method. Training a regressor specific to each
scene shows an improvement over scene independent regressor. This improvement is for both using oracle scene label and
scene classification for test images. Histogram correction step reduces errors significantly for both ground truth and mean
histograms. Completely automatic configuration — offline training with scene labels, scene classification for test image and
histogram correction with mean histogram — outperforms the baseline. Average color image gives good performance on our
metric because it does not specifically penalize spatially odd distributions such as isoluminant edges, which are clearly visible
in column 2 of Figure 4. Scene-wise split of these results in supplementary.
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(a) Cumulative histogram of pixel errors (0.01 wide bins)
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(b) Cumulative histogram of image errors (0.01 wide bins)

Figure 2: Our method gives the dual benefit of higher % of pixels and images with low errors. In contrast, Welsh et al. gives
lower % of pixels and images with low errors. Though, average image gives similar % of low error pixels as our method, its
per image errors are higher than our method. Higher per image errors lead to bad spatial artifacts when using average color

(see Figure 4), which our method avoids.

train images). Here we assume that the scene label for test
images is provided by the oracle.

Scene classification while testing. As above, we train
LEARCH image regressors for each scene category accord-
ing to ground truth labels and compute a scene specific his-
togram. During testing, the scene labels are not provided,
instead we predict them and then reconstruct using the re-
gressor associated with the predicted label. Scene specific
histograms are used to perform histogram correction.

4.5. Results

4.5.1 Large-scale learned colorization possible

As shown in Figure 4, our method produces good color im-
ages as output, in fact use of ground-truth histogram allows
us to output strikingly similar looking images to the ground-
truth. The output color images with LEARCH followed

by correction with mean histogram also show good resem-
blance to ground-truth. They are free from spatial oddities,
unlike Welsh et al. and average color image. Generally
large regions are assigned close to ground-truth colors, but
smaller regions/objects are assigned spatially coherent but
incorrect colors. This is likely because they are not sam-
pled frequently.

We achieve these results by leveraging large datasets of
images for learning colorization. This is in stark contrast to
the practice of using a single or a few carefully selected ref-
erence images for colorization. For large datasets an RMS
error provides a valid error metric. Furthermore, at test
time we can provide the ground truth histogram, ensuring
our prediction shares the same color palette as ground truth.
Reasonable quantitative comparisons (Table | and Figure
2) can be performed as opposed to previous methodology
of qualitatively comparing the output of a few test images.



(a) Ground Truth (b) Learch O/P

(c) GT Hist.

(d) Mean Hist. (e) Exemplar# 1 (f) Exemplar# 2

Figure 3: Different shading obtained with histogram correction.

4.5.2 Scene information makes a big difference

In Table 1 using scene specific training of LEARCH with
an oracle scene label at test time improves performance by
8.4% over scene independent training. An improvement of
4.9% is observed if instead we predict this label by scene
classification. The results show that training on a partic-
ular scene category, helps the LEARCH objective exploit
the underlying structure within the data and learn the opti-
mal function parameters. Scene information is thus vital for
learning methods for colorization.

4.5.3 Histogram correction helps

Table 1 compares the impact on LEARCH error when dif-
ferent kinds of histograms are used in histogram correction.
To test for best possible improvement with histogram cor-
rection, we use the ground truth histogram of the test im-
age. We also report results for mean histogram of all train
images, of the given scene. In all experiments, we observe
a decrease in error with histogram correction. This demon-
strates the importance of optimizing the regressed output to
take into account global properties of the scene.

Figure 3 shows use of histogram correction to generate
different shades from the same regressed output. Exemplar
histograms are sampled from training images of the scene
category. Thus, the histogram correction step allows for an
authoring pipeline, wherein an expert user modifies the tar-
get histogram as needed.

4.5.4 Practical Colorization Methods

There are two use cases in colorization: either a user wants
to colorize one or a handful of images; or a user wants
to colorize a movie or a similarly large collection of im-

Baseline
With scene label Our Method
Scene-specific
Welsh | Scene-indep. Trainin,

Avg. Color et al. Trainingp + Mean H%st.
Classif  Oracle
-ication  Label
0.265 0.353 0.284 0.262 0.254

Table 2: Comparison of errors for practical colorization
methods. Our method outperforms baseline, both with and
without the availability of scene label for test images.

ages. In the first case, it is reasonable to expect the user
to provide a scene label. For this, we run scene specific
LEARCH using the oracle label and mean histogram. In
the second case, it is necessary that the colorization be fully
automatic. There are two ways to perform automatic col-
orization, either we use scene independent LEARCH or we
generate scene labels using scene classification and pick the
appropriate scene specific regressor. Scene classification
LEARCH with histogram correction outperforms scene in-
dependent LEARCH (Refer Table 2 for comparison).

5. Conclusions

We propose a method to predict colorization using an
objective automatically learned by LEARCH. We demon-
strate that the method produces spatially coherent coloriza-
tion, and when augmented with histogram correction pro-
duces visually appealing and convincing colorizations. Our
method performs best when scene information is available
from an oracle, but our fully automated approach, which
uses scene classification, produces near optimal results.



(a) Welsh et al. (b) Avg. Color (c) Learch + Mean Hist. (d) Learch + GT Hist. (e) Ground Truth

Figure 4: Qualitative comparison of colorization output of different methods. (Best viewed in color and high resolution)



References

(1]
(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

(10]

[11]

J. T. Barron and J. Malik. Shape, illumination, and re-
flectance from shading. TPAMI, 2015. 2

S. Bell, K. Bala, and N. Snavely. Intrinsic images in the wild.
ACM Trans. Graph., 33(4):159:1-159:12, July 2014. 2

A. Bugeau, V.-T. Ta, and N. Papadakis.  Variational
Exemplar-Based Image Colorization. /IEEE Transactions on
Image Processing, 23(1):298-307. 2

G. Charpiat, M. Hofmann, and B. Scholkopf. Automatic im-
age colorization via multimodal predictions. In Proceedings
of the 10th European Conference on Computer Vision: Part
111, ECCV 08, pages 126-139, Berlin, Heidelberg, 2008.
Springer-Verlag. 2

J. H. Friedman. Greedy function approximation: A gradient
boosting machine. Annals of Statistics, pages 1189-1232,
2001. 3

R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Free-
man. Ground-truth dataset and baseline evaluations for in-
trinsic image algorithms. In International Conference on
Computer Vision, pages 2335-2342, 2009. 2

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.
Salesin. Image analogies. In SIGGRAPH, 2001. 2

J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression
tree fields - an efficient, non-parametric approach to image
labeling problems. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, April 2012. 2

E. Land and J. J. Mccann. Lightness and retinex theory. J.
Opt. Soc. Am., 61(1):1-11, Jan 1971. 1

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-
tures: Spatial Pyramid Matching for Recognizing Natural
Scene Categories. In Computer Vision and Pattern Recog-
nition, 2006 IEEE Computer Society Conference on, pages
2169-2178, 2006. 4

T. Leung and J. Malik. Representing and recognizing the
visual appearance of materials using three-dimensional tex-
tons. Int. J. Comput. Vision, 43(1):29-44, June 2001. 4

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

A. Levin, D. Lischinski, and Y. Weiss. Colorization using op-
timization. ACM Trans. Graph., 23(3):689-694, Aug. 2004.
2

Y. Morimoto, Y. Taguchi, and T. Naemura. Automatic col-
orization of grayscale images using multiple images on the
web. In SIGGRAPH 2009: Talks, SIGGRAPH ’09, New
York, NY, USA, 2009. ACM. 2, 5

D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition - Volume 2, CVPR ’06, pages 2161-2168, Washing-
ton, DC, USA, 2006. IEEE Computer Society. 4

A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International
Journal of Computer Vision, 42(3):145-175, 2001. 4

T. Pouli and E. Reinhard. Progressive histogram reshap-
ing for creative color transfer and tone reproduction. In
Proceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering, NPAR ’10, pages
81-90, New York, NY, USA, 2010. ACM. 4

N. D. Ratliff, D. Silver, and J. A. Bagnell. Learning to search:
Functional gradient techniques for imitation learning. Au-
tonomous Robots, 27(1), July 2009. 2, 3

M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman.
Learning Gaussian Conditional Random Fields for Low-
Level Vision. In CVPR, 2007. 2

T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color
to greyscale images. In SIGGRAPH, 2002. 2, 5

J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva.
SUN Database: Exploring a Large Collection of Scene Cat-
egories. International Journal of Computer Vision, Aug.

2014. 1,4



